
FmPro Migrator - BASIC to

LiveCode Conversion

Procedure

FmPro Migrator - BASIC to LiveCode Conversion Procedure

BASIC to LiveCode Conversion1

Introduction - BASIC to LiveCode Conversion 41.1

Step 1 - Create FmPro Migrator Project File 81.2

Step 2 - Select Conversion Options & Convert BASIC Files 121.3

VB6 to LiveCode Conversion2

VB6 to LiveCode - Form and Script Conversion 182.1

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 3

BASIC to LiveCode

Conversion

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 4

Introduction - BASIC to LiveCode Conversion

This document provides an explanation of the steps required to convert BASIC scripts to LiveCode

scripts using FmPro Migrator Platinum Edition.

This document also includes VB6 to LiveCode conversion info, showing how to convert the VB6

.frm files and .bas script files into LiveCode stacks.

Revision 03

9/7/2013

[Updated LiveCode graphics screenshots.]

About the BASIC to LiveCode Conversion Process

The BASIC to LiveCode conversion process is designed to convert all of the BASIC files within a

source directory, including all subdirectories. FmPro Migrator is designed to read BASIC files

having a variety of file extensions (including: bas, vba, vbs or txt) during the conversion process.

Each file within the source directory is read into memory and analyzed on a line by line basis.

Keywords and operators are read and converted to the equivalent keywords and operators in

LiveCode.

BASIC Code Processing Features

1) Traversal of the files and subdirectories of the selected source directory. Re-creation of the

same file and directory structure within the selected destination directory. Quickly convert all of the

.bas files within the source directory and subdirectories.

2) Processing of .bas, .vba, .vbs and .txt source files, including support for Visual Basic,

PowerBasic, ZBASIC/FutureBasic, RealBasic, VBScript and VisualBasic for Applications code.

3) High performance processing. Process hundreds of files and hundreds of thousands of lines of

code in seconds.

4) Code indenting is maintained for most situations. The exception is CASE statements where

additional Default statements get added.

5) Line continuation characters are removed, as part of the code parsing process.

6) Compiler directives starting with "$" are commented out.

7) DIM/STATIC commands are converted into local/global variable definitions in LiveCode, in

which the "As <VariableType>" definitions are removed and the static memory quantity is also

removed, since it isn't needed in LiveCode. For instance the statement

DIM ParameterData2$(3750)

gets changed to

local ParameterData2

8) BASIC variable suffix characters (%, $) are removed from most instructions.

9) Each variable definition is checked to insure that it does't exactly match an existing LiveCode

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 5

keyword. If a conflict exists between a variable name and an existing keyword, then an underscore

character is added to the variable name.

10) Variable assignments are converted into LiveCode "put" commands. Colon or single quote

comment operators following the assignment on the same line will be commented using the "--"

LiveCode operator and placed to the right side of the assignment statement. Variable suffixes will

be removed and the variable names checked against the LiveCode keywords list on the left side of

the assignment operator.

11) Private Sub definitions are converted into LiveCode private command handlers with the "end

sub" replaced with "end <command name>".

12) Public Sub definitions are converted into LiveCode private command handlers with the "end

sub" replaced with "end <command name>".

13) OPEN/INPUT/CLOSE commands using file numbers (#1, #2 etc.) are partially converted into

LiveCode open/read/close file commands. Manual changes will be required in order to specify

14) The BASIC For loop keyword is converted into a "repeat with" keyword in LiveCode. The For

loop variable is fully checked for LiveCode keyword conflicts and BASIC variable suffix characters

are removed. BASIC variable suffix characters are removed from the remaining variables.

15) BASIC code labels ending with a colon are commented out.

16) ON Error statements are commented out, along with GOTO commands. Error checking can be

rewritten using Try/Catch statements in LiveCode.

17) Passing parameters by reference using the ByVal keyword are converted into the @ reference

passing character used in LiveCode.

18) Functions having optional arguments specified with the Optional keyword will have this

optional keyword removed. If default values are needed for the parameters, these should be

defined manually within the function.

19) SELECT CASE statements are converted into LiveCode SWITCH statements. Each CASE

statement is closed with a break statement. CASE ELSE statements are converted into "default"

statements.

20) The DO WHILE/DO UNTIL keywords are converted into a "repeat while/until" statements, with

the closing LOOP keyword converted into an "end repeat" statement. The LOOP keyword is

processed if it is the last word of an instruction containing other keywords and if it is on a line by

itself.

21) The LET keyword is removed and the instruction is processed as a standard assignment

statement.

22) The LONG IF keyword is processed the same as a regular IF keyword. (ZBASIC/FutureBasic).

23) SLEEP <interval> is converted into "wait <interval> milliseconds with messages".

24) Function return parameters specifying the function name will be replaced with the LiveCode

return keyword.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 6

BASIC Omitted Functions and Keywords

Some Basic functions are purposely omitted from the conversion processing because they require

manual work:

1) Instr(variable1, ".") -> offset(".", variable1] - The string to find and string to search parameter

positions need to be swapped manually when converting to LiveCode.

2) Basic "+" operators can be used to represent either a mathematical operation or string

concatenation.

3) bin$() -> binaryEncode() - The LiveCode formatting needs to be manually applied to the data to

be converted into binary. (ZBASIC/FutureBasic)

4) box, circle, button -> Create an object using the appropriate style of specified object.

(ZBASIC/FutureBasic)

5) hex$() -> binaryDecode() - The LiveCode formatting needs to be manually applied to the data to

be converted into hex. (ZBASIC/FutureBasic)

6) kill path$ -> delete file <filepath> (ZBASIC/FutureBasic)

7) WAITKEY$ - There isn't an equivalent command to wait for keystrokes entered via the command

line, which is how commands like INPUT$ and WAITKEY$ are used. LiveCode is event driven, so

messages such as entering keystrokes within fields, and tabbing between fields can be captured

and used to trigger code to run at the appropriate time.

Unsupported Features Requiring Manual Conversion

1) Poorly formed BASIC code will not get fully processed. For instance, keywords, operators and

variables should generally be separated from each other by at least one space character.

2) One instruction per line can be parsed correctly. The additional instructions of BASIC code on

the same line won't be completely converted. However commented code to the right of variable

assignment statements will be commented appropriately.

3) Operating system specific or BASIC language specific functions won't be converted.

4) BASIC external libraries or calls to installed .dll files.

5) Syntax errors or other types of problems which prevent the BASIC code from executing won't be

corrected.

6) BASIC object oriented code features won't be converted, but will remain in the converted code

for reference purposes. For instance Button1.Caption won't be converted into "the name of button

Button1". This is due to the difficulty of determining the type of object referenced in the original

code (button, field, window etc.). Note: This dot notation conversion is done automatically for VB6

projects. See the VB6 chapter of this manual for more details.

7) Multiple variable assignments within the same instruction. These statements need to be

separated into two separate instructions.

8) Automated conversion of twips to pixel coordinates between Visual Basic and LiveCode is not

implemented. There are 1440 twips per inch and approximately 15 twips per pixel (depending

upon screen resolution). LiveCode uses pixel based coordinates when defining object locations.

Note: Twips to Pixel conversion is done for VB6 conversion projects. See the VB6 chapter of this

manual for more details.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 7

9) BASIC On Error Goto ErrorHandler code remains unconverted.

10) The use of # characters in place of double quotes for enclosing date values being assigned to

a variable.

11) Removal of Visual Basic object type names during the conversion of object variable DIM

statements. This limitation also applies to user defined data types.

12) IsEmpty(), Null and Error value implementations. There is too much chance of error if doing

this type of conversion using a simple text replacement algorithm. But if an assignment statement

is found to contain the text "Nothing" it is replaced with "empty" for compatibility with LiveCode.

13) ReDim statements are commented out, because they could either be used to clear an array or

resize the array. The actual usage needs to be determined manually.

14) Visual Basic code using Collections.

15) Passing of named parameters to functions or handlers is not supported in LiveCode, and

needs to be changed manually in the source code.

16) ELSEIF statements should be manually converted into SWITCH/CASE statements if there are

more than 2 conditions being checked. This change will also make the code easier to read,

understand and troubleshoot.

17) The DO WHILE/DO UNTIL statements are converted if both keywords are on the same line

with each other. If the DO keyword is separated from the WHILE/UNTIL keyword then it won't be

converted.

18) Very few recorded VBA Macro statements will be directly converted due to the reliance upon

application-specific objects, properties and methods. Most of these features will only available

within the original Microsoft application.

19) Array references will be converted from parenthesis () to square brackets [] on the left hand

side of the assignment operator. This change won't occur for array references on the right hand

side.

20) WITH/END WITH keywords are not applicable in LiveCode, so they are commented out.

21) The RealBasic CountFields/CountFieldsB() function should be manually replaced with setting

the itemDelimiter to the field delimiter and then getting the count of the number of items in the

container.

22) The ZBASIC/FutureBasic cursor cursorID is converted into "set the cursor to" but it will be

necessary to change the constants to the appropriate values used in LiveCode (watch, arrow etc).

23) The DELAY command is converted into "wait for". If you want to specify "with messages" then

this text should be added manually along with a unit of time. (ZBASIC/FutureBasic).

24) PRINT and STDOUT keywords are converted into LiveCode "put" statements, which will by

default send the output to the message box during development. This is probably not what you

want with a modern application. Further work should be done to analyze how this info should be

presented to the user within the context of an event driven development process.

25) PowerBasic Embedded x86 assembler in-line code which starts with a "!" character will be

commented out, since this is not applicable to LiveCode development.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 8

Step 1 - Create FmPro Migrator Project File

In order to perform a migration project, FmPro Migrator needs to create a MigrationProcess.db3

project file to store information about the migration project. Code conversion projects work a little

differently than database conversion projects, so the Create Project File... menu is used to get the

process started.

Open FmPro Migrator

Click the FileMaker tab to select an output directory.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 9

Click FileMaker Tab

Click the Browse button to select the directory which will be used to store the FmPro Migrator

project file. This directory can be the same output directory used for generating the converted

scripts or stack file or it can be a different directory.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 10

Select Create Project File... Menu

Select the Create Project File... item from the File menu. As soon as the FmPro Migrator project file

has been created, the Migration Process window will open.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 11

Click GUI Tab of Migration Process Window

Since a database migration is not being done, ignore the contents of the various database

migration features, and click on the GUI tab button.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 12

Step 2 - Select Conversion Options & Convert BASIC Files

Click BASIC to LiveCode Button

(1) Select the BASIC to LiveCode option from the menu, then (2) Click the BASIC to LiveCode

button to open the BASIC to LiveCode window.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 13

BASIC to LiveCode Options

There are several options which need to be set prior to performing a code conversion project:

1) Source File Type(s): bas, vba, vbs or txt.

2) Source Directory - This is the top-level directory containing your BASIC scripts. All enclosed

directories will be traversed and files within those directories will also be processed.

3) Destination Directory - This is the output directory where the converted files will be written.

4) Output File Type - The BASIC files can be converted into .irev files or a single LiveCode stack

having a card representing each converted source file.

5) By default, the BASIC to LiveCode process operates in Demo mode. In Demo mode, 5 files of

unlimited length will be processed. Ordering a license key removes this limitation.

6) Click the Convert button to convert the BASIC files.

Note: The VB6 Conversion process is explained in a separate section of this manual.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 14

Conversion Results

After clicking the Convert button, FmPro Migrator converts each of the files and displays the

conversion results.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 15

.irev Converted Files

The generated .irev files shown in the output directory. When generating .irev files, the <?rev tags

are added to each file since each line of the file is considered executable code.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 16

BASIC Converted.rev Stack with Converted Card Scripts

If the stack output file type is selected, a stack named BASIC Converted.rev will be created within

the output directory. Each BASIC script is converted into a card having a name consisting of the

subdirectory name and script name. Select any card in the Rev Application Browser and

right-click on the card to select the Edit Script contextual menu item. The script will be opened in

the LiveCode editor.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 17

VB6 to LiveCode Conversion

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 18

VB6 to LiveCode - Form and Script Conversion

This chapter of the manual covers the process for converting VB6 projects into LiveCode stacks.

Each .FRM form file in the Visual Basic 6 project is converted into a card within a LiveCode stack

file, and each .bas code file is converted into a .irev text file containing LiveCode code.

Open BASIC to LiveCode Conversion Window

Once the BASIC to LiveCode Conversion window has been opened, click on the VB6 Conversion

button. Clicking this button will save either the Demo version (Demo mode), or Production version

(Licensed mode) of the VB6ToLiveCode conversion stack file.

The Demo version of the VB6ToLiveCode Conversion stack converts up to 5 forms and 5 .bas

script files. Once the license key has been entered for the BASIC to LiveCode Conversion feature,

the production version of the stack will be saved to the output directory when clicking the VB6

Conversion button (as shown above). The VB6toLiveCode Production stack provides unlimited

processing capabilities.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 19

Saving the VB6ToLiveCode Conversion Stack

The VB6ToLiveCode Conversion stack file will be saved to the previously selected FmPro Migrator

output directory.

Using The VB6ToLiveCode Conversion Stack

(1) Select a source directory containing the VB6 project files, (2) select an destination directory for

the converted files, (3) click the Convert button.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 20

VB6 Conversion Results

Once the processing has been completed, the results will be displayed, and the new VB6

Converted.livecode stack will be saved into the Destination Directory and left open in the

LiveCode IDE in front of the VB6ToLiveCode Conversion stack.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 21

Locked Stack Error

The VB6ToLiveCode Conversion stack is a locked stack, so that you won't be able to open any of

its scripts within the LiveCode IDE.

Unlike the rest of the FmPro Migrator application, the VB6ToLiveCode Conversion stack is

implemented as a stack file which runs directly in the LiveCode IDE. The VB6 Conversion feature

is implemented as a stack in order to allow it to insert converted scripts of unlimited length into

objects on the converted cards.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 22

Converted Form: SCICALC

This screenshot of the SCICALC.FRM VB6 form shows (1) the converted form, and the (2) objects

with script counts in the LiveCode Application Browser.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 23

DelButton - Original VB6 Code

This is the original VB6 code for the DelButton script.

DelButton LiveCode - Converted Script

This screenshot shows the LiveCode version of the DelButton object script. This screenshot was

taken after hitting the TAB key to reformat the code.

This code definitely needs work after the automated conversion process, but the basic structure of

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 24

the code syntax, functions and operators have been re-written for LiveCode. Most of the object

properties will not make sense within the context of a LiveCode application.

The code has been moved from the .FRM file and placed within the DelButton object, as would be

expected of a LiveCode application. But the handler has not be renamed using the on mouseUp()

message to allow for multiple scripts to exist within the same object. As with LiveCode, there could

be multiple messages and multiple scripts handling messages for any particular object.

SCICALC LiveCode Card Script

Any remaining VB6 code which is not associated with a form object, is placed into the script for the

card itself, just as would be done with a typical LiveCode application.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 25

VB6 Converted .irev Scripts

VB6 .bas files are converted into text files having the .irev extension and stored in a directory

structure matching the original VB6 project.

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 26

TypeMod.irev LiveCode Script

VB6 Supported Form Objects

The following object types are converted from VB6 forms:

PictureBox

ImageBox

Label

TextBox

FmPro Migrator - BASIC to LiveCode Conversion Procedure - 27

Frame

CommandButton

CheckBox

OptionButton - (grouped if within a Frame)

ComboBox

ListBox

HorizontalScrollbar

VerticalScrollbar

DriveListBox

DirectoryListBox

FileListBox

Slider

TabDlg

VB6 Unsupported Form Objects

Timer

Shape

Line

Data

OLE

ActiveX Controls

Additional Conversion Notes

1) Note: Objects having their coordinates set as negative numbers will be reset to a coordinate

value of 0.

2) All VB6 forms must use the default measurement of Twips, as these are converted into Pixel

coordinates prior to conversion. Any forms which use any other unit of measurement should be

updated in Visual Basic 6 to use Twips prior to conversion.

	FmPro Migrator - BASIC to LiveCode Conversion Procedure
	Table of Contents
	BASIC to LiveCode Conversion
	Introduction - BASIC to LiveCode Conversion
	About the BASIC to LiveCode Conversion Process
	BASIC Code Processing Features
	BASIC Omitted Functions and Keywords
	Unsupported Features Requiring Manual Conversion

	Step 1 - Create FmPro Migrator Project File
	Open FmPro Migrator
	Click FileMaker Tab
	Select Create Project File... Menu
	Click GUI Tab of Migration Process Window

	Step 2 - Select Conversion Options & Convert BASIC Files
	Click BASIC to LiveCode Button
	BASIC to LiveCode Options
	Conversion Results
	.irev Converted Files
	BASIC Converted.rev Stack with Converted Card Scripts

	VB6 to LiveCode Conversion
	VB6 to LiveCode - Form and Script Conversion
	Open BASIC to LiveCode Conversion Window
	Saving the VB6ToLiveCode Conversion Stack
	Using The VB6ToLiveCode Conversion Stack
	VB6 Conversion Results
	Locked Stack Error
	Converted Form: SCICALC
	DelButton - Original VB6 Code
	DelButton LiveCode - Converted Script
	SCICALC LiveCode Card Script
	VB6 Converted .irev Scripts
	TypeMod.irev LiveCode Script
	VB6 Supported Form Objects
	VB6 Unsupported Form Objects
	Additional Conversion Notes

